where a, b, etc. lobel
$$SU(n)$$
 generators λ_{a} ,
with $tr \{\lambda_{a}, \lambda_{b}\} = \frac{1}{2} \delta_{ab}$.
For $n > 2$ also have:
 $SU(n)_{L} - SU(n)_{L} - SU(n)_{L}$ and
 $SU(n)_{R} - SU(n)_{R} - SU(n)_{R}$ anomalies
with values
 $Dal, bL, cL = DaR, bR, cR = N tr [fn_{a}, \lambda_{b}], \lambda_{c}]$
Suppose that $SU_{L}(n) \times SU_{R}(n) \times U(1)$ symmetry
is not spontaneously broken.
 \implies confinement leads to bound states
of m_{L} and m_{R} elementary fermions
of helicity $\pm \frac{1}{2}$ and $-\frac{1}{2}$, and m_{L} and
 m_{R} of their antiparticles, with
 $m_{L} + m_{R} - m_{L} - m_{R} = KN$
(example : $K = 1$, $N = 3$, $m_{L} = 3$ and
 m_{R} , m_{L} , $m_{R} = 0$, Then $u_{L}^{c} u_{L}^{c} d_{L}^{c} s_{NST}$
is a $SU(3)$ -neutral bound state)
 \implies encounter irreducible reps (r,s) of
 $SU(n)_{L} \times SU_{R}(n)$ where $m \times n \times \dots \times m \times m \times m \times m$

$$(4|\sum_{r_{1}s_{1}K>0} l(r,s_{1}K) ds tr^{(r)} [\{J_{a_{1}}, J_{b_{2}}, J_{c}] = N tr[\{J_{a_{1}}, J_{b}\}J_{c}]]$$

$$(5) \sum_{r_{1}s_{1}K>0} l(r_{1}s_{1}K) d_{s}K tr^{(r)} [\{J_{a_{1}}, J_{b}\}] = tr[\{J_{a_{1}}, J_{b}\}],$$

Consider the case n=2:
no SU(2)-invariant out of 3 3-vectors
-> both sides of (4) vanish
defining 2-dim. of SU(2) appears in any
odd product of itself
-> get a solution of (5) by taking

$$l(r,s,k) = 0$$
 except for $r = defining rep.$
 $s = trivial.$
-> set $l(n, 1, 1) = 1$
This solution is for from unique!
systematic study:
Specialize to case N=3, K=1, and $m_1 = m_R = 0$
-> get following possibilition:
a) r is symmetric 3rd-rank SU(n) tensor;
s is trivial

Take for example QCD:
has SU(3)_L × SU(3)_R × U(1)_V global symmetry
in UV (rotations of u, d, s quqvks)
→ since eq. (4) cannot be satisfied,
the symmetry must be broken in CR
spontaneously !
S6.5 Consistency Conditions
Useful to assume that all symmetry
currents (even global symmetries) are
coupled to gauge fields. At the end, we
can always tak g→0 for those symmetries
and return to a global symmetry
→ apart from anomalies, the effective
action T[A] is invariant under
background gauge
field
Asm(Y) → Asm(Y)+ifd⁴x E_x(X) T_x(X)Asm(Y)
where we must take
-i T_x(Y) = -
$$\frac{3}{3x^n} \frac{S}{SAy(X)} - Cysy Asm(X) \frac{S}{SAy(X)}$$

in order to reproduce

$$\partial A^{S}_{m} = \partial_{n} \varepsilon^{S} + i \varepsilon^{S} (t^{A}_{a})^{S}_{y} A^{Y}_{n}$$

 $-i C^{S}_{yx}$
Taking anomalies into account have
 $\mathcal{J}_{x}(x) T[A] = G_{x}[x;A]$
where
 $D_{n} \langle \gamma^{m}_{x}(x) \rangle = -i G_{x}[x;A]$
and
 $\langle \gamma^{m}_{x}(x) \rangle = \frac{S}{SA_{xx}} T^{T}[A]$
with $D_{n} = \partial_{n} - i A^{S}_{n}(x) (t_{S})_{e}^{m}$ the gauge-
covariant derivative
The commutation relations
 $[\mathcal{J}_{x}(x), \mathcal{J}_{S}(y)] = i C_{xSY} S^{u}(x-y) \mathcal{J}_{Y}(x)$
imply the "Wess-Zumino" consistency
conditions:
 $\mathcal{J}_{x}(x) G_{p}[y;A] - \mathcal{J}_{S}(y) G_{x}[x;A]$
 $= i C_{xSY} S^{u}(x-y) G_{y}[y;A]$