't Hooft anomaly matching:
UV: symmetry with generators T_{α} acting on left-handed spin $\frac{1}{2}$ fermions with anomalies $\operatorname{tr}\left[\left\{T_{\alpha} T_{\beta}\right\} T_{r}\right] \neq 0$
IR: massless bound states transform under the same symmetry with generators T_{α}, T_{s}, etc.

$$
\begin{equation*}
\rightarrow \operatorname{tr}\left[\left\{\mathcal{T}_{\alpha}, \mathcal{T}_{\beta}\right\} \mathcal{T}_{\gamma}\right]=\operatorname{tr}\left[\left\{T_{\alpha}, T_{\beta}\right\} T_{\gamma}\right] \tag{1}
\end{equation*}
$$

Example:
Suppose underlying theory contains "flavors" of massless fermions in the defining rep. N of $S U(N)$ gange group (asymptotically free) \rightarrow take N to be odd, so that there can be $S U(\mathbb{N})$-neutral boundsties
\rightarrow global symmetry:

$$
\operatorname{su}(n) \times s u_{R}(n) \times u_{v}(1)
$$

non-vanishing anomaly constants:

$$
\operatorname{su}(n)_{L}-\operatorname{su}(n)_{2}-u(1)_{y} \text { and } \operatorname{su}(n)_{R}-\operatorname{su}(n)_{R}-u()_{y}
$$

$$
\text { with } D_{a L, b L, 0}=D_{a R, b R, 0}=N \delta_{a b}
$$

where a, b, etc. label $\operatorname{sU}(n)$ generators λ_{a}, with $\operatorname{tr}\left\{\lambda_{a} \lambda_{b}\right\}=\frac{1}{2} \delta_{a b}$.
For $n>2$ also have:

$$
\begin{array}{ll}
\operatorname{su}(n)_{L}-\operatorname{su}(n)_{L}-\operatorname{su}(n)_{L} & \text { and } \\
\operatorname{su}(n)_{R}-\operatorname{su}(n)_{R}-\operatorname{su}(n)_{R} & \text { anomalies }
\end{array}
$$

with values

$$
D_{c L, b L, c L}=D_{a R, b R, c R}=N \operatorname{tr}\left[\left\{\lambda_{a}, \lambda_{b}\right\}, \lambda_{c}\right]
$$

Suppose that $S U_{L}(n) \times S U_{R}(n) \times U(1)$ symmetry is not spontaneously broken.
\rightarrow confinement leads to bound states of m_{L} and m_{R} elementary fermions of helicity $+\frac{1}{2}$ and $-\frac{1}{2}$, and \bar{m}_{L} and \bar{m}_{p} of their antiparticles, with

$$
m_{L}+m_{R}-\bar{m}_{L}-\bar{m}_{R}=k N
$$

(example: $k=1, N=3, m_{L}=3$ and $m_{R}, \bar{m}_{L}, \bar{m}_{R}=0$, Then $u_{L}^{\alpha} u_{L}^{\beta} d_{L}^{\gamma} \varepsilon_{\alpha \beta \gamma}$ is a $\operatorname{su}(3)$-neutral bound state)
\rightarrow encounter irreducible reps (r, s) of $\operatorname{su}(n)_{L} \times s U_{R}(n)$ where $\underbrace{n_{0} \times n \times \cdots \times n \times \underbrace{\overline{n_{\times}} \times \bar{n}}_{\bar{m}_{L} \text {-tines }}}_{m_{L} \text {-times }}$

$$
=\cdots+r+\cdots
$$

and $\underbrace{n \times n \times \cdots \times n \times}_{m_{R} \text {-times }} \underbrace{\bar{n} \times \cdots \times \bar{n}}_{\bar{m}_{R}-t i m e s}=\cdots+s+\cdots$.
$U(1)_{v}$ quantum number $=k N$
Define $p(r, s, k) \equiv \#(r, s)$-rep of $\operatorname{su}(u)_{L} \times s u(n)_{R}$ with U(1), -quantum number $K N$ appears
Then eq. (1) becomes:
(2) $\sum_{r, s, k} p(r, s, k) d_{s} \operatorname{tr}^{(r)}\left[\left\{\mathcal{J}_{a}, \mathcal{J}_{b}\right\} \mathcal{F}_{c}\right]=N \operatorname{tr}\left[\left\{\lambda_{a}, \lambda_{b}\right\} \lambda_{c}\right]$
(3) $\sum_{r, s, k} p(r, s, k) d_{s} k \operatorname{tr}^{(r)}\left[\left\{\tilde{J}_{a}, \tau_{b}\right\}\right]=\operatorname{tr}\left[\left\{\lambda_{a}, \lambda_{b}\right\}\right]$
where $t_{r}{ }^{(r)}$ is the trace in the irreducible rep. r of $\operatorname{su}(n)$, and d_{s} is the dim. of rep. s of $\operatorname{su}(n)$, and $p(r, s, k)$ must be positive integers.
For $(\bar{r}, \bar{s},-k)$ (cc. rep.) the traces $t_{r}{ }^{(r)}\left[\left\{\mathcal{F}_{a}, \mathcal{F}_{b}\right\} \mathcal{F}_{c}\right]$ and $k t_{r}{ }^{(r)}\left[\left\{\mathcal{T}_{1} \mathcal{J}_{b}\right\}\right]$ have opposite values to those of (r, s, k).

$$
\rightarrow \ell(r, s, k)=p(r, s, k)-p(\bar{r}, \bar{s},-k)
$$

and eos. (2) and (3) become:

$$
\begin{aligned}
& (4) \sum_{r, s, k>0} \ell(r, s, k) d_{s} \operatorname{tr}^{(r)}\left[\left\{\widetilde{a}_{a} \widetilde{F}_{b}\right\} \mathcal{T}_{c}\right]=\operatorname{Ntr}\left[\left\{\lambda_{a}, \lambda_{b}\right\} \lambda_{c}\right] \\
& (5) \sum_{r, s, k>0} l(r, s, k) d_{s} k t_{r}^{(r)}\left[\left\{\mathcal{F}_{a}, \mathcal{J}_{b}\right\}\right]=\operatorname{tr}\left[\left\{\lambda_{a}, \lambda_{b}\right\}\right]
\end{aligned}
$$

Consider the case $n=2$:
no su(2)-invariant out of 33 -vectors
\rightarrow both sides of (4) vanish defining 2 -dim. of SU(2) appears in any odd product of itself
\rightarrow get a solution of (5) by taking $l(r, s, k)=0$ except for $r=$ defining rep,

$$
s=\text { trivial }_{1}
$$

\rightarrow set $\ell(n, 1,1)=1$

$$
k=1
$$

This solution is far from unique!
systematic study:
specialize to case $N=3, K=1$, and $\bar{m}_{L}=\bar{m}_{R}=0$
\rightarrow get following possibilities:
a) r is symmetric 3rd-rank sill(n) tensor; s is trivial rep.
b) r is anti-sym 3rd-rank $\operatorname{su}(n)$ tensor; s is trivial
c) r is 3rd-rank of mixed symmetry; shiv
d) r is sym 2ud-rank tensor; s is $\operatorname{su}(n)$-vector
e) r is anti-sym. Ind-rank-tensor;
s is $s u(n)$ vector
f) r is $s U(n)$ vector; s is sym. 2nd-rank tensor
g) r is $S U(n)$ vector; s is anti-sym. and-rank sunn) tensor.
$\vdots r$ is trivial,
For $n>2$, eqs. (4) and (5) read:
(6)

$$
\begin{aligned}
& \frac{1}{2}(n+3)(n+6) l_{a}+\frac{1}{2}(n-3)(n-6) l_{b}+\left(n^{2}-9\right) l_{c} \\
& +n(n+4) l_{d}+n(n-4) l_{e}+\frac{1}{2} n^{2}(n+1) l_{f}+\frac{1}{2} n^{2}(n-1) l_{g}=3
\end{aligned}
$$

and

$$
\frac{1}{2}(n+2)(n+3) \ell_{a}+\frac{1}{2}(n-2)(n-3) \ell_{b}+\left(n^{2}-3\right) \ell_{c}+n(n+2) \ell_{d}
$$

(7) $+n(n-2) l_{e}+\frac{1}{2} n(n+1) l_{f}+\frac{1}{2} n(n-1) l g=1$
\rightarrow for n a multiple of 3 , for all values of $l ' s$, each term on the LHS of (6) is a multiple of 3
\rightarrow impossible to satisfy eq. (6) for n a multiple of 3 !

Take for example QCD:
has $\operatorname{sU}(3)_{L} \times \operatorname{sU}(3)_{R} \times U(1)_{V}$ global symmetry in $U V$ (rotations of $u_{1} d, s$ quarks)
\longrightarrow since eq. (4) cannot be satisfied, the symmetry must be broken in IR spontaneously!
§6.5 Consistency Conditions
Useful to assume that all symmetry currents (even global symmetries) are coupled to gange fields. At the end, we can always take $g \rightarrow 0$ for those symmetries and return to a global symmetry
\rightarrow apart from anomalies, the effective action $\Gamma[A]$ is invariant under background gauge field

$$
A_{\beta \mu}(y) \longmapsto A_{\beta \mu}(y)+i \int d^{4} \times \varepsilon_{\alpha}(x) \mathcal{J}_{\alpha}(x) A_{\beta \mu}(y)
$$

where we must take

$$
-i J_{\alpha}(x)=-\frac{\partial}{\partial x^{\mu}} \frac{\delta}{\delta A_{\alpha \mu}(x)}-C_{\alpha \beta \gamma} A_{\beta \mu}(x) \frac{\delta}{\delta A_{\gamma_{\mu}}(x)}
$$

in order to reproduce

$$
\begin{gathered}
\partial A_{\mu}^{\beta}=\partial_{\mu} \varepsilon^{\beta}+i \varepsilon^{\beta}\left(t_{\alpha}^{\beta}\right)_{\gamma}^{\beta} A_{\mu}^{\gamma} \\
-i C_{\gamma \alpha}^{\beta}
\end{gathered}
$$

Taking anomalies into account, have

$$
\mathcal{J}_{\alpha}(x) T[A]=G_{\alpha}[x ; A]
$$

where

$$
D_{\mu}\left\langle\gamma_{\alpha}^{\mu}(x)\right\rangle=-i G_{\alpha}\left[x_{i} A\right]
$$

and $\left\langle Y_{\alpha}^{\mu}(x)\right\rangle=\frac{\delta}{\delta A_{\alpha \mu}(x)} \Gamma[A]$
with $D_{m}=\partial_{\mu}-i A_{\mu}^{\beta}(x)\left(t_{\beta}\right)_{e}^{m}$ the gaugecovariant derivative
The commutation relations

$$
\left[\tilde{J}_{\alpha}(x), \tilde{\delta}_{\beta}(y)\right]=i C_{\alpha \beta \gamma} \delta^{4}(x-y) \tilde{J}_{\gamma}(x)
$$

imply the "Wess-Zumino" consistency conditions:

$$
\begin{array}{r}
\widetilde{\delta_{\alpha}}(x) G_{\beta}[y ; A]-\widetilde{\delta_{\beta}}(y) G_{\alpha}\left[x_{i} A\right] \\
=i C_{\alpha \beta \gamma} \delta^{4}(x-y) G_{y}\left[y_{i} A\right]
\end{array}
$$

